

для построения инфраструктуры высоконагруженных корпоративных и государственных информационных систем

скала р

ЛЕТ серийного выпуска

скала р

680

комплексов в промышленной эксплуатации 10

ТЫС. + вычислительных узлов

Продуктовые направления Скала^р

решения для высоконагруженных корпоративных и государственных систем

Динамическая инфраструктура

Машины динамической инфраструктуры Скала^р МДИ

на основе решений BASIS для создания динамической конвергентной и гиперконвергентной инфраструктуры ЦОД и виртуальных рабочих мест пользователей

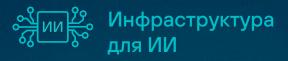
Управление большими данными

Машины больших данных Скала^р МБД.8

на основе решений ARENADATA и PICODATA для создания инфраструктуры хранения, преобразования, аналитической, статистической обработки данных, а также распределенных вычислений

Высокопроизводительные базы данных

Машины баз данных Скала р МБД


на основе решений Postgres Pro для замены Oracle Exadata в высоконагруженных системах с обеспечением высокой доступности и сохранности критически важных данных

Интеллектуальное хранение данных

Машины хранения данных Скала р МХД

на основе технологии объектного хранения S3 для геораспределенных катастрофоустойчивых систем с сотнями миллионов объектов различного типа и обеспечения быстрого доступа к ним

Машина искусственного интеллекта Скала[^]р

на основе оптимизированного программноаппаратного стека для максимальной производительности при работе с моделями ИИ

- Использование опыта технологических лидеров (гиперскейлеров)
- Использование самых зрелых и перспективных технологий в кооперации с технологическими лидерами российского рынка в каждом из сегментов

Программная платформа Скала^р

Объединения различных доменов управления в единую функциональную графовую CMDB

Комплексное решение для эксплуатации инфраструктуры уровня ЦОД

- Единая точка обзора состояния контура
- Обозримость и удобство управления ЦОД
- Цифровой двойник инфраструктуры
- Контроль изменений быстроменяющихся топологий
- Моделирование изменений в инфраструктуре
- Высокая степень автоматизации
- Построение Al-Copilot для управления ЦОД

Импортозамещение: сложность выбора Отсутствие технологического лидерства

Вычислительная

инфраструктура

Российский ИТ-рынок

Проблемы отсутствия ИТ-лидеров на российском рынке

- Отсутствие информации и практического подтверждения совместимости продуктов
- Время и ресурсы для подтверждения соответствия заявленной функциональности

- Проблема совместимости с продуктами из разных классов
- Размывание понятия «лидер»: в каждом сегменте существуют десятки на первый взгляд равноценных продуктов

Почему ПАК Скала р?

- Гарантированно совместимые компоненты
- Отказоустойчивость на уровне архитектуры
- Оптимизация производительности
- Ответственность одного производителя за функционал и показатели назначения
- Решенные вопросы интеграции, эксплуатации, мониторинга, обеспечения ИБ, резервного копирования
- Поддержка и сервис из одного окна
- Серийность и преемственность
- Управляемая дорожная карта развития

Конкурентные преимущества оптимизированных решений Скала[^]р

Производительность

чем решения, использующие сопоставимые аппаратные средства за счет оптимизации ввода-вывода и интерконнекта и за счет разгрузки ЦПУ

чем решения в виртуальной среде, использующие сопоставимые аппаратные средства за счет снижения латентности

для систем с большим количеством сессий за счет использования специализированных пулеров и балансировщиков

RPO/RTO

время выполнения резервного копирования и восстановления за счет специализированного встроенного модуля резервного копирования

время полного восстановления узла в случае отказа за счет использования встроенной системы развертывания и цифрового двойника системы

Доступность

Кратное сокращение инцидентов

связанных с ошибками эксплуатации и существенное увеличение доступности за счет использования специализированной системы управления ресурсами

ПАК — Машины Скала[^]р — преимущества перед самостоятельными проектами

Высокая отказоустойчивость

За счет специализированной модульной и кластерной архитектуры решений

Высокая производительность

Встречная оптимизация и устранение узких мест по всему стеку применимых технологий

Премиальный сервис

Гарантированно работоспособное решение

Прямое взаимодействие с технологическими партнерами по развитию необходимого Заказчикам функционала

ПАК — Программно-аппаратный комплекс и модули платформы — включены в Единый реестр российской радиоэлектронной продукции и реестр Минцифры

О рынке АСУ-ТП

Вызовы рынка и текущие задачи в рамках концепции О-АСУ ТП

Текущие варианты решений, продукты и предложения в рамках высоконагруженной ИТ-инфраструктуры

Требования к информационной безопасности и СЗИ с учетом требований к ОКИИ

Наработки и задачи по стандартизации

О рынке АСУ-ТП

Вызовы рынка и текущие задачи в рамках концепции О-АСУ ТП

Текущие варианты решений, продукты и предложения в рамках высоконагруженной ИТ-инфраструктуры

Требования к информационной безопасности и СЗИ с учетом требований к ОКИИ

Наработки и задачи по стандартизации

Формализация рынка ПАК

Правительство РФ

2017

Государственная Дума РФ

2023

ПП 719 от 17.07.2015

2015

Критерии подтверждения производства продукции на территории РФ

ФЗ 187-ФЗ от 26.06.2017

Обеспечение безопасности КИИ РФ и обеспечение ее устойчивого функционирования

-2022

П 787-П от 12.01.2022 г
Требования ЦБ
к операционной надежности
в целях обеспечения
непрерывности оказания
услуг

УП 166 от 30.03.2022

Обеспечение технологической независимости и безопасности КИИ

ПП 1912 от 14.11.2023

Порядок перехода субъектов КИИ РФ на применение **Доверенных ПАК** для ЗОКИИ РФ Утвержден

перечень типовых объектов КИИ РФ в различных отраслях промышленности

Президент

ЦБ РФ

ФСТЭК

Минцифры

2025

Минпромторг

2024

Утвержден классификатор Программно-Аппаратных Комплексов — ПАК. Присвоен код ОКПД — 26.20.14.160

УП 309 от 07.05.2024

Определены целевые показатели по цифровой трансформации до 2030 — 95% Российское ПО

Определены перечни для которых осуществляется <u>запрет</u> или <u>ограничения</u> закупок для

государственных, муниципальных и отдельных юридических лиц

ПП 1236

ПП 925

ПП 878

ПП 1875 от 23.12.2024

Меры по предоставлению национального режима при осуществлении закупок

2022

Технический комитет по стандартизации <u>ТК 167</u>

Информационная безопасность

Технологическая независимость

Функциональная устойчивость

ПНСТ 905-2023

КИИ. Доверенные Программно-Аппаратные Комплексы Термины и определения ПНСТ 910-2024

КИИ. Доверенные
Программно-Аппаратные Комплексы
Общие принципы формирования комплекса стандартов

ПНСТ 911-2024

КИИ. Доверенные Интегральные Микросхемы и Электронные Модули Общие положения

Вызовы рынка и текущие задачи в рамках концепции О-АСУ ТП

Высокая стоимость владения

проприетарные решения требуют значительных инвестиций в оборудование, лицензии и обучение персонала

Недостаточная гибкость

быстро меняющиеся требования рынка и технологий требуют гибких решений. Закрытые системы часто не справляются с этой задачей

Фрагментация и несовместимость компонентов

традиционные АСУ ТП часто представляют собой закрытые системы, которые сложно интегрируются с оборудованием и программным обеспечением разных производителей

Цифровая трансформация

Индустрия 4.0 и интернет вещей (IIoT) требуют интеграции АСУ ТП с облачными платформами, аналитическими инструментами и системами управления данными

АСУ ТП: предпосылки, инициативы и задачи развития

Требования законодательства РФ и ограничения технологий из недружественных стран

Запросы от ключевых Заказчиков (концепция и подходы к импортозамещению апробированы в рамках конференций и предварительной проработке с промышленностью в 2023 – 2024 гг.)

Предварительное и MVP продукта проверены в 2024 – 2025 гг. на пилотных проектах ведущих предприятий нефтеперерабатывающей и химической промышленности

Экспертиза Группы Rubytech по созданию, выводу на рынок и производству программно-аппаратных комплексов Скала^р для высоконагруженной ИТ-инфраструктуры

Экспертиза Группы Rubytech (ЦЦТ) по отраслевым решения и настройке АСУ ТП Honeywell, Yokogawa, Emerson, ...

АСУ ТП: текущее состояние отрасли

Переход на ДПАК (ППРФ 1912)

- Требования Минцифры, РРПП и РРРП, ФСТЭК
- Необходимость модернизации существующих систем до 2030г.
- Наличие открытых вопросов, требующих дополнительных уточнений и разъяснений
- Неопределенность в части дальнейших действий регуляторов
- Ограниченное количество предложений на рынке

Отечественные АСУ ТП

- Ограниченное количество систем на рынке
- Уровень функциональности ниже по сравнению с существующими системами (SCADA/ПЛК)
- Сложности в технической реализации стандартных функций (HART, резервирование, ...)
- Использование в составе санкционно-зависимых технологий и ПО
- Высокие трудозатраты длительные сроки инжиниринга и выполнения пуско-наладочных работ
- Сложности при эксплуатации и обслуживании систем, кадровые проблемы со специалистами

Существующие АСУ ТП

- Высокий уровень надежности систем, малое количество отказов
- Высокие функциональные и эксплуатационные характеристики
- Простота обслуживания, наличие кадров и команд с компетенциями
- Отсутствие технической поддержки со стороны «вендоров»
- ЦЦТ выполняет модернизацию, расширение и поддержку систем Honeywell

Открытая АСУ ТП

- Интерес со стороны Заказчиков, интеграторов, поддержка государства
- Технологическая сложность создания интегрированного решения класса РСУ
- Длительные сроки реализации
- Ограниченность объектов для внедрения

Модернизация систем -

- Убытки от простоя ТП во время замены АСУ ТП
- Защита сделанных инвестиций до 2022г.
- Невозможность быстрого перехода, риски/убытки при поэтапной модернизации
- Сложность эксплуатации «гибридных» систем и сопутствующие риски

АСУ ТП: модернизация ИТ-инфраструктуры

Этап 2 Этап 3 Этап 4 Этап 5 Этап 1 Выполнение аудита АСУ Поставка компонентов Подключение Поэтапная миграция Проверка и отладка ТП на плошадке и настройка Машины в режиме «ОНЛАЙН» работы виртуальной и комплектующих, или «ОФЛАЙН» сборка и тест Скала^р для интеграции инфраструктуры Заказчика оборудования в существующую продуктивных нагрузок Скала р экспертной Разработка на Машину Скала^р инфраструктуру АСУ ТП командой Настройка Машины и согласование Сдача АСУ ТП на базе Проверка работы технического решения Скала р в соответствии Машины Скала р с требованиями проекта Машины Скала^р Разработка дорожной в промышленную Поставка ПАК карты и плана поэтапной Создание резервных эксплуатацию копий узлов АСУ ТП на площадку Заказчика реализации проекта и подготовка к миграции 01 02 03 04 05

Импортозамещение: сложность выбора Отсутствие технологического лидерства

Российский ИТ-рынок

Проблемы отсутствия ИТ-лидеров на российском рынке

- Отсутствие информации и практического подтверждения совместимости продуктов
- Время и ресурсы для подтверждения соответствия заявленной функциональности

- Проблема совместимости с продуктами из разных классов
- Размывание понятия «лидер»: в каждом сегменте существуют десятки на первый взгляд равноценных продуктов

Независимость: варианты реализации

Покомпонентное замещение

- Время на изучение вариантов, тестирование и выбор.
- Лавина взаимосвязанных проектов по внедрению
- Сложность синхронизации дорожных карт развития
- Рост сроков внедрения и рисков на стыках

Создание целевой доверенной ИТ-инфраструктуры

- Последовательный перевод систем на целевую доверенную ИТ-инфраструктуру
- Снижение нагрузки с текущей инфраструктуры и необходимости ее масштабирования
- Сокращение сроков внедрения и снижение рисков

Отраслевой полигон Скала^р

Лаборатория Скала^р (группа Rubytech) в интересах всех участников промышленных решений

«Провайдер»
или выделенная
служба обеспечивает
услугу laaS
всем участникам
Лаборатории
Скала^р

Информирование участников Лаборатории о результатах, аналог «архитектурного комитета»

Участники нацелены на увеличение доли отечественных и решений из дружественных стран, обмена опытом, передачи результатов и экспертизы в рамках сообществ профессионалов О-АСУ ТП и ТК-167

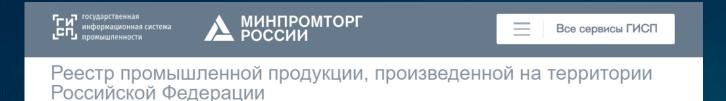
О рынке АСУ-ТП

Вызовы рынка и текущие задачи в рамках концепции О-АСУ ТП

Текущие варианты решений, продукты и предложения в рамках высоконагруженной ИТ–инфраструктуры

Требования к информационной безопасности и СЗИ с учетом требований к ОКИИ

Наработки и задачи по стандартизации


ПАК Скала р в Реестрах РФ

Машины

Модули

Компоненты

Машины

Модули

Программное обеспечение

Машины

Модули

Программное обеспечение

Соответствуют критериям доверенного ПАК

- Технологическая независимость
- Информационная безопасность
- Функциональная устойчивость

Модульная платформа Скала р

Использование опыта технологических лидеров — гиперскейлеров

Единый принцип модульной компоновки и платформенный подход

Единая облачная система управления сервисами

laaS

PaaS

DBaaS

Программная платформа Скала^р для управления ресурсами и эксплуатацией

Разделение ресурсов

Мультитенантность

Автоматизация

Партнёры Скала^р

Комплексное техническое решение Скала[^]р ПАК АСУ ТП

выполнено на базе сертифицированной (реестровой)
Машины Скала^р МВ.С в соответствии с требованиями к ОКИИ*:

- Замена существующих серверов и станций на отечественный ПАК устойчивость и независимость цифровой IT-инфраструктуры
- Решение проблем совместимости с платформами, не поддерживающих устаревшие версии драйверов, ОС и ПО АСУ ТП
- Обновление сетевой инфраструктуры с учетом особенностей предприятия и требований ИБ
- Повышение отказоустойчивости и организация резервных центров управления
- Консолидация и оптимизация вычислительных мощностей в рамках предприятия, гибкость конфигурации и возможность наращивания архитектуры
- Сервис и технической поддержки от ведущего системного интегратора с учетом опыта эксплуатации и обслуживания крупнейших ЦОД в России
- Снижение затрат на развитие и поддержание всей IT-инфраструктуры АСУ ТП

^{*} ОКИИ – объект критической информационной инфраструктуры

Тестирование ПАК Скала р АСУ ТП

Текущий статус по проделанной работе и планы

- Завершены функциональные и нагрузочные тесты с ПО Honeywell R3XX/R4XX/R5XX и контроллерами
- Завершены тесты сетевой инфраструктуры сети FTE на отечественном оборудовании Eltex и B4com
- Завершены тесты с использованием отечественного реестрового оборудования типа «тонкий клиент»
- Завершены функциональные и нагрузочные тесты Yokogawa
- Проводятся тесты встроенных и наложенных средств информационной безопасности для обеспечения защиты на всех уровнях и всего периметра АСУ ТП
- Планируются тесты с оборудованием и ПО других вендоров SCADA и DCS (формируется список)
- Планируются тесты с Siemens с использованием специализированных сетевых адаптеров

О рынке АСУ-ТП

Вызовы рынка и текущие задачи в рамках концепции О-АСУ ТП

Текущие варианты решений, продукты и предложения в рамках высоконагруженной ИТ–инфраструктуры

Требования к информационной безопасности и СЗИ с учетом требований к ОКИИ

Наработки и задачи по стандартизации

Скала[^]р — безопасность, встроенная в ПАК

Актуальные угрозы АСУ ТП

Заблокированный зарубежным вендором сервисный доступ в работающих АСУ ТП для специалистов предприятия

Не декларируемые каналы удалённого доступа зарубежных вендоров и их партнёров к АСУ ТП на площадке российских предприятий

Сложность проверки и отсутствие доверия к патчам и обновлениям от зарубежных вендоров АСУ ТП

Де-факто не доверенные зарубежные СЗИ на периметре и внутри АСУ ТП иностранного производства

Отсутствие контроля доступа к критичной информации со стороны иностранных вендоров и их партнёров

Отсутствие контроля за действиями сторонних сервисных инженеров

Возможности злоумышленникам

Угрозы безопасности прикладного уровня систем промышленной автоматизации способы их реализации в БДУ ФСТЭК:

Выполнение не легитимных и не корректных пользовательских операций в среде исполнения АСУ ТП

<u>УБИ.3</u>

<u>СП.18.1, СП.18.2, СП.19.1, СП.19.2, СП.19.3, СП.19.4, СП.19.5, СП.21.1, СП.21.2, СП.21.3, СП.23.1, СП.23.2, СП.24.2,1</u>

Не легитимное и не корректное использование инженерного ПО, среды разработки SCADA, проектов PLC и Safety

УБИ.3

СП.18.1, СП.18.2, СП.19.1, СП.19.2, СП.19.3, СП.19.4, СП.19.5, СП.21.1, СП.21.2, СП.21.3, СП.23.1, СП.23.2, СП.24.2,1

Подмена/модификация конфигураций и проектов SCADA, PLC и Safety терминалов

УБИ.4

СП.18.1, СП.18.2, СП.19.1, СП.19.2, СП.19.3, СП.19.4, СП.19.5, СП.21.1 , СП.21.2, СП.21.3, СП.23.1, СП.2 3.2, СП.24.2,1 Деструктивные воздействия изнутри и извне систем управления

УБИ.2, УБИ.6

СП.21.2, СП.21.3, СП.23.1, СП.23.2

Сокрытие следов своей деятельности в прикладном ПО

УБИ.5

СП.2.2. СП.2.7. СП.2.8. СП.2.11

Негативные последствия

Негативные последствия БДУ ФСТЭК, реализуемые, в том числе, через атаки на прикладной уровень систем промышленной автоматизации:

H.14

Нарушение штатного режима функционирования автоматизированной системы управления и управляемого объекта и/или процесса

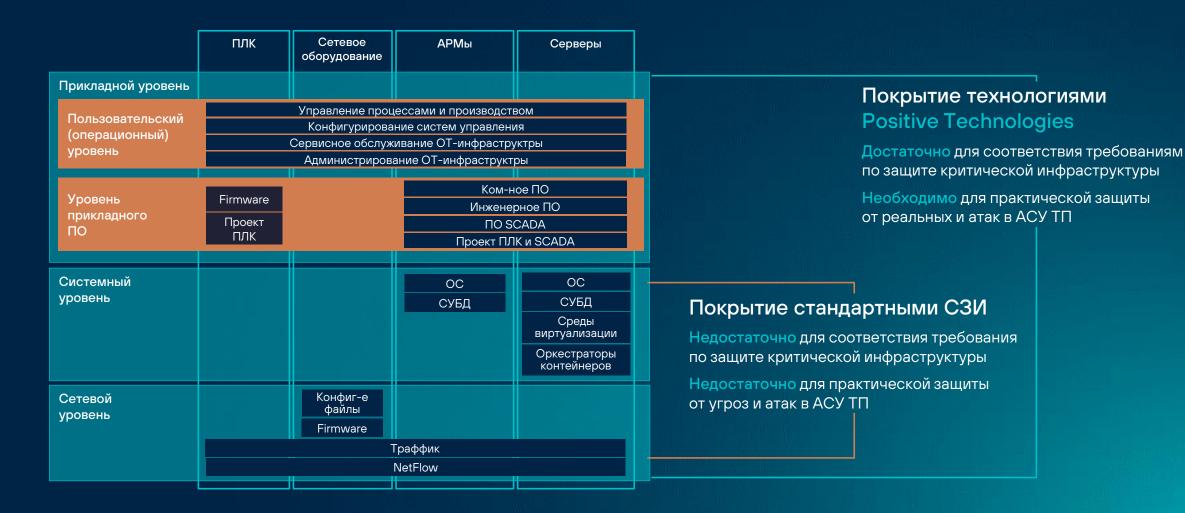
H.25

Невозможность решения задач (реализации функций) или снижение эффективности решения задач (реализации функций)

H.32

Прекращение или нарушение функционирования объектов обеспечения жизнедеятельности населения

H.41

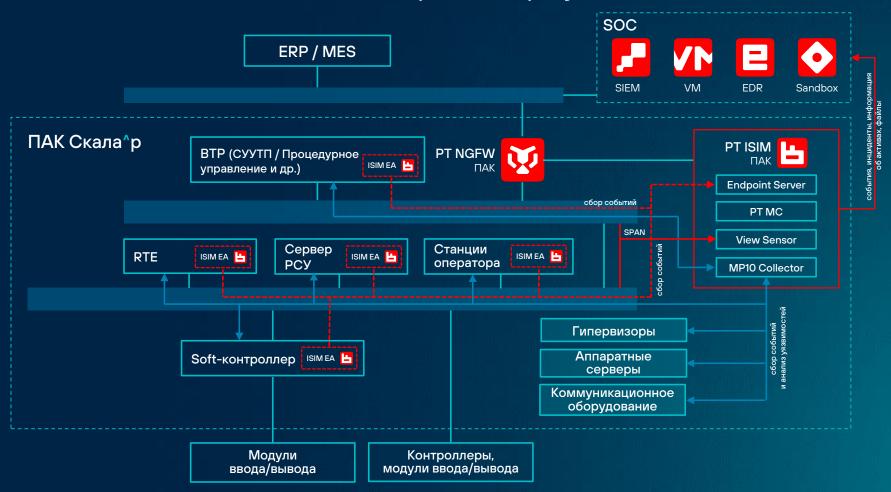

Вредные воздействия на окружающую среду

H.44

Нарушение штатного режима функционирования автоматизированной системы управления и управляемого объекта и/или процесса, если это ведет к выводу из строя технологических объектов, их компонент

Стандартные СЗИ — это недостаточно

Positive Technologies Industrial Cybersecurity Suite



Технологии безопасности	Продукты	Возможности продуктов
Анализ трафика, обнаружение инцидентов	PT ISIM	 Поддержка промышленных сетевых протоколов Детекты новых угроз и атак Цепочки инцидентов в технологическом трафике
Защита конечных точек		 Совместимость с промышленным hardware/software Правила обнаружения, работающие на конечных узлах Поддержка промышленного прикладного ПО Антивирусная защита
Управление уязвимостями	MaxPatrol VM	 Сканеры SCADA, firmware Обнаружение уязвимостей
Управление инцидентами	MaxPatrol SIEM	 Транспорты к проприетарному software и firmware Нормализация событий SCADA, Firmware Кейс-ориентированные корреляции
Защита от ВПО	PT Sandbox	 Эмуляция технологических сред Обнаружение АСУ ТП-специфичного ВПО
Межсетевое экранирование, предотвращение вторжений	PT NGFW	 Сегментация сети на уровнях L3-L7 Защита периметра, предотвращение вторжений

ПАК АСУ ТП Решение по безопасности

Обеспечение безопасности ПАК Скала^р на базе продуктов РТ

О рынке АСУ-ТП

Вызовы рынка и текущие задачи в рамках концепции О-АСУ ТП

Текущие варианты решений, продукты и предложения в рамках высоконагруженной ИТ–инфраструктуры

Требования к информационной безопасности и СЗИ с учетом требований к ОКИИ

Наработки и задачи по стандартизации

Требования открытых систем (1/2)

Открытые системы основываются на новых международных стандартах, таких как OPAS, и позволяют различным компонентам взаимодействовать друг с другом, независимо от производителя.

Это обеспечивает:

Совместимость

интеграция оборудования и программного обеспечения от разных производителей

Гибкость

возможность адаптации системы под конкретные задачи

Экономическую эффективность

снижение затрат на внедрение и поддержку, благодаря использованию стандартных решений

Инновации -

быстрое внедрение новых технологий, благодаря открытой архитектуре

Требования открытых систем (2/2)

Текущие требования в рамках открытых систем прозрачны и понятны ИТ сообществу, практически применимы при создании технологических решений и программно-аппаратных комплексов.

Использование открытых стандартов типа ОРС UA, IEC 61499 и MQTT становится основой для создания открытых АСУ ТП

Развитие экосистем

Производители оборудования и программного обеспечения объединяются в экосистемы, чтобы обеспечить совместимость решений

Цифровизация и IIoT

открытые АСУ ТП интегрируются с облачными платформами и системами анализа данных, что позволяет создавать интеллектуальные производственные системы

Модульность

АСУ ТП строятся на модульной архитектуре, что упрощает масштабирование и обновление системы

Наработки и задачи по стандартизации

Требования национальных стандартов (ПНСТ)

Классификация и стандартизация доверенных программно-аппаратных комплексов (ДПАК) для критической информационной инфраструктуры Российской Федерации (КИИ) в рамках рабочей группы ТК-167 разработана с целью обеспечения перехода субъектов КИИ на преимущественное применение ДПАК на принадлежащих им значимых объектах КИИ.

Совместная работа по формированию национальных стандартов ведется с 2022 года:

ПНСТ 905-2023 Критическая информационная инфраструктура. ДОВЕРЕННЫЕ ПРОГРАММНО-АППАРАТНЫЕ КОМПЛЕКСЫ. Термины и определения

ПНСТ 910-2024 КИИ. ДОВЕРЕННЫЕ ПРОГРАММНО-АППАРАТНЫЕ КОМПЛЕКСЫ. Общие принципы формирования комплекса стандартов

ПНСТ 911-2024 КИИ. ДОВЕРЕННЫЕ ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ И ЭЛЕКТРОННЫЕ МОДУЛИ. Общие положения

Наработки и задачи по стандартизации

Отраслевой полигон Скала р (подходы)

Инновационность, созидание и работа на опережение

Использование мирового опыта технологических лидеров АСУ ТП

Преемственность опыта и экспертизы практик и партнеров

Развитие и непрерывность улучшений

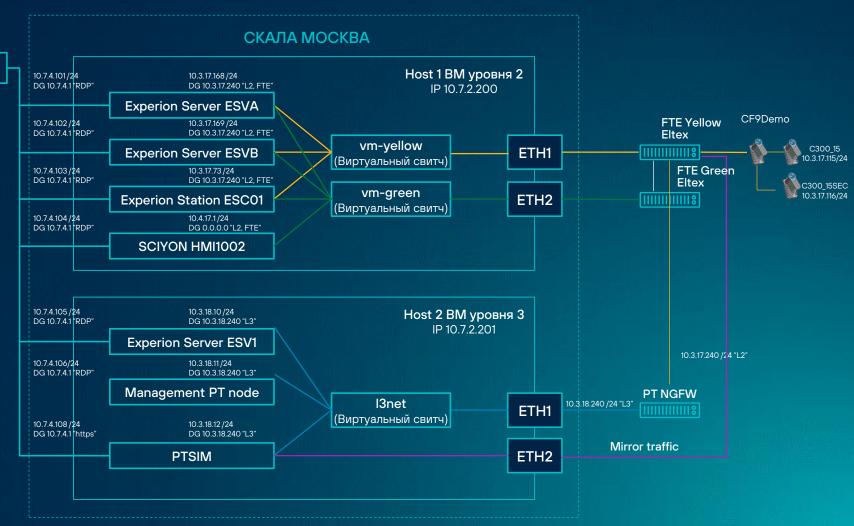
Использование зрелых и перспективных технологий (в кооперации с технологическими лидерами)

Отраслевой полигон Скала^р (АСУ ТП)

Инновационность, созидание и работа на опережение

INTERNET

Оборудование


- Сервера OpenYard (или аналоги)
- Коммутаторы Eltex
- Тонкий клиент TONK1200
- Контроллер С300 с модулями ввода/вывода
- Сетевой экран Control Firewall
- Шасси (полка PCle)

Программное обеспечение

- ПО Базис vControl
- ПО Experion PKS

Компоненты ИБ и СЗИ

- PT ISIM подсистема анализа технологического трафика
- PT NGFW межсетевой экран для высоконагруженных систем

Перспективные Машины Скала^р

Al

Технологии обучения моделей и их проигрывания

Kubernetes

Создание инфраструктуры для контейнеризации

YDB

Горизонтальное масштабирование и катастрофоустойчивость

VDI

3D-проектирование

Машина искусственного интеллекта

Машина виртуализации Скала^р МВ.К

Машина баз данных Скала^р МБД.Я

Машина виртуализации Скала^р МВ.ВРМ с 3D

Полигон для испытаний

СМИ о новом подходе к построению корпоративной ИТ-инфраструктуры

- Премия TAdviser IT Prize
 «Импортозамещение в банковском секторе:
 стратегия года»
- Газпромбанк о кейсе импортозамещения на TAdviser SummIT 28 мая 2024 года

Смотреть видеовыступление Газпромбанка о проекте

